Combining near infrared spectra of feces and geostatistics to generate forage nutritional quality maps across landscapes.
نویسندگان
چکیده
An important asset for the management of wild ungulates is recognizing the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data, however, may be difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighboring DISTEX values to detect and map "hot spots" and "cold spots" of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Québec, Canada), where white-tailed deer (Odocoileus virginianus) populations over the landscape have ranged from 20 to 50 individuals/km2 for at least 80 years, resulting in a loss of most palatable and nutritious plant species. Our results suggest that hot spots of forage quality occur when old-growth balsam fir stands comprise >39.8% of 300 ha neighborhoods, whereas cold spots occur in laggs (i.e., transition zones from forest to peatland). In terms of ground-level indicator plant species, the presence of Canada bunchberry (Cornus canadensis) was highly correlated with hot spots, whereas tamarack (Larix laricina) was highly correlated with cold spots. Mean DISTEX values were positively and significantly correlated with the neutral detergent fiber and acid detergent lignin contents of feces. While our approach would need more independent field trials before it is fully validated, its low cost and ease of execution should make it a valuable tool for advancing both the basic and applied ecology of large herbivores.
منابع مشابه
Potential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملNondestructive Firmness Estimation of Tomato Fruit Using Near-Infrared Spectroscopy
Today, nondestructive methods are widely used to determine the quality of agricultural products. Meanwhile, visible and near-infrared (Vis/NIR) spectroscopy is regarded as one of the most widely used methods in the field of quality assessment of agricultural products. In this study, a system was developed to measure the Vis/NIR spectra of tomato fruit samples in the half-transmittance mode of m...
متن کاملEstimating Nitrogen and Acid Detergent Fiber Contents of Grass Species using Near Infrared Reflectance Spectroscopy (NIRS)
Chemical assessments of forage clearly determine the forage quality; however, traditional methods of analysis are somehow time consuming, costly, and technically demanding. Near Infrared Reflectance Spectroscopy (NIRS) has been reported as a method for evaluating chemical composition of agriculture products, food, and forage and has several advantages over chemical analyses such as conducting c...
متن کاملPhotosynthetic pigments estimate diet quality in forage and feces of elk (Cervus elaphus)
Understanding the nutritional dynamics of herbivores living in highly seasonal landscapes remains a central challenge in foraging ecology with few tools available for describing variation in selection for dormant versus growing vegetation. Here, we tested whether the concentrations of photosynthetic pigments (chlorophylls and carotenoids) in forage and feces of elk (Cervus elaphus L., 1785) wer...
متن کاملDetermination of Forage Chemical Composition Using Remote Sensing
Traditional forage nutrient analysis from bench-top near-infrared spectroscopy (NIRS) or common laboratory chemical procedures provides accurate, point-based information, but often does not provide it in a timely way to allow changes in forage or animal management. The objective of this study is to determine the feasibility of estimating concentrations of nitrogen, neutral detergent fiber (NDF)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2015